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Abstract. In the regime of linear response theory, a detailed investigation has been made of
the thermodynamic and thermotransport properties of a two-dimensional electron gas modulated
by a one-dimensional periodic magnetic field. The presence of the magnetic modulation leads
to Weiss-like oscillations in the thermal magnetotransport coefficients. At lower temperatures
(T = 1, 2 K) and for a weak magnetic field(B0 < 0.2 T), there are just Weiss oscillations, while
at B0 > 0.2 T, the usual Shubnikov–de Haas oscillations appear and overlap the envelopes of
the slow oscillations (Weiss oscillations). At higher temperatures(T = 4, 10 K), there are just
Weiss oscillations. The thermal magnetotransport coefficients(κµν, (κ

−1)µν) have a stronger
dependence on the temperature than the electrical ones(σµν, ρµν).

1. Introduction

Since the discovery of the oscillations in magnetoresistance of the two-dimensional electron
gas (2DEG) modulated by a one-dimensional (1D) weak periodic potential [1], much
attention has been attracted to the study of these novel oscillations (also called Weiss
oscillations) [2–14]. In a perpendicular magnetic field with a weak 1D potential modulation,
the Weiss oscillations in the magnetoresistance tensorρµν are periodic in 1/B with a larger
period than that of the Shubnikov–de Haas (SdH) oscillations. The period of the Weiss
oscillations depends on both the modulation perioda and the square root of the areal
electron density of the 2DEG (

√
ne), which contrasts with the linear dependence (onne) of

the SdH oscillations. The amplitude of the Weiss oscillations has a weaker dependence on
the temperature than that of the SdH oscillations [1, 9].

Another system of great interest is the 2DEG modulated by a 1D periodic magnetic
field. In the regime of linear response theory [15], the electrical transport properties of this
system have been studied by several authors, and some important results have been obtained
[16–22]. The results state that, in this new system, Weiss-like oscillations occur, related to
the modulation of the magnetic field, which is similar to the case for the potential-modulated
system [1, 9].

As is known, thermal magnetotransport is a very important aspect for a 2DEG [9].
In this paper we wish to perform calculations on the thermodynamics and the thermal
magnetotransport properties of a 2DEG for the magnetic modulation case similar to those
carried out in reference [9] for the potential modulation. In order to make a comparison
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with the results for the potential modulation case [9], we take the same modulation period
and modulation strength as in reference [9] and assume that the magnetic modulation is
in phase with that of the potential case [9]. We will make a detailed investigation of the
Fermi energy (EF ), the magnetization (M), the susceptibility (χ ), the specific heat (C), the
thermopower (S), the thermal conductivity (κ), and the thermal resistance (κ−1) of a 2DEG
modulated by a 1D periodic magnetic field.

We organize the paper as follows. The thermodynamics of the 2DEG is studied in
section 2. The thermal magnetotransport coefficients and a numerical analysis are presented
in section 3. Finally, our conclusions are given and some remarks are made in section 4.

2. Thermodynamics

For a uniform magnetic field, a detailed study of the magnetization, the specific heat, the
magnetothermal effect, and the thermopower of a 2DEG was made by Zawadzki and Lassnig
[23]. In this section we will generalize the study to the case of a 2DEG modulated by a
1D periodic magnetic field. The discussion will be limited to a relatively low magnetic
field, i.e.B0 < 1.0 T. For the sake of simplicity, we do not consider spin splitting in the
following discussion.

Now we consider a 2DEG lying in the (x, y) plane with a lateral weak periodically
modulated magnetic field (the modulation being taken to be along thex-direction)B =
(B0 + B1(x))êz, where the modulation amplitude|B1| � B0. Using the Landau gauge for
the vector potential, we takeA = A0+A1 = (0, A0(x)+ A1(x), 0), where

A0(x) = B0x A1(x) =
∞∑
p=1

2 Re

[
B1

2if (gp)
eigpx

]
gp = p2π

a
.

f (gp) has the same dimensions asg1 (=2π/a), andf (g1) = 2π/a. The energy spectrum
of an electron in a non-interacting 2DEG is [22]

En,ky =
(
n+ 1

2

)
h̄ωc +

∞∑
p=1

εn,p cos(pKx0)

εn,p = 1

2
h̄ω1

[
pK

f (pK)

]
e−p

2u/2[L1
n(p

2u)+ L1
n−1(p

2u)]

(1)

whereωc = eB0/m
∗, ω1 = eB1/m

∗, u = 1
2K

2l2, K = 2π/a, andl2 = h̄/m∗ωc. x0 = kyl2,
whereky is the wavevector of the electron in they-direction. In the above formula, the
spin splitting is not taken into consideration.

Without loss of generality, we only consider the contribution of the lowest order of the
Fourier transformation of the modulation field in the following discussion, that is

B =
(
B0+ B1 cos

2π

a
x

)
êz

which is in phase with the potential modulation [9]. In this case, the bandwidth of thenth
Landau subband is 2|εn,1|.

The Fermi energy is an important parameter for a 2DEG, and can determined from the
following relation:

ne = 2
∫ ∞

0
dE f (E)D(E) (2)

wherene is the electron areal density.f (E) = 1/[e(β(E−EF )+1] is the Fermi–Dirac distrib-
ution function of the energy (E), andβ = 1/kBT . EF is the Fermi energy. The factor 2
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is the spin degeneracy.D(E) is the density of states (DOS) of the electron in the 2DEG
[22]. In the absence of a magnetic field, the DOS is a constant, and the Fermi energy of
the 2DEG is only dependent on the temperature [23]. In a perpendicular uniform magnetic
field (B0), the DOS isD(E) = (1/2πl2)∑n δ(E−En) [9], wherel andωc are respectively
the cyclotron radius and frequency of the electron, as defined above. The Fermi energy is
an oscillatory function of the magnetic field [23]—that is, the usual SdH oscillation. As the
temperature becomes higher, the amplitude of this SdH oscillation tends towards zero [23].

Figure 1. The change of the Fermi energy due to the 1D periodic magnetic modulation as a
function of the magnetic fieldB0 for T = 2 and 10 K.1EF = EF (B1)− EF (B1 = 0).

With a one-dimensional modulating magnetic field applied, the DOS of the 2DEG is [22]

D(E)/D0 = h̄ωc
2π

∞∑
n=0

∫ π

0
dt δ(E − En,t ) (3)

whereD0 = m∗/πh̄2 is the DOS of a 2DEG atB0 = 0. t = (2π/a)x0, x0 = kyl2, andEn,t
is determined by equation (1). With this equation, equation (2) becomes

neπl
2 =

∞∑
n=0

1

π

∫ π

0
dt f (E)

∣∣∣∣
E=En,t

. (4)

Because of the occurrence of new structures in the DOS [22], there would be new oscillations
in the Fermi energy of the 2DEG. The numerical results for the Fermi energy, and the
parameters used, are shown in figure 1. We take the effective mass to bem∗ = 0.067m
(in GaAs), wherem is the bare mass of the electron. In figure 1 we have reset the Fermi
energy according to the Fermi energy atB = B0, i.e., 1EF = EF (B1) − EF (B1 = 0).
The solid line represents the Fermi energy at temperatureT = 2 K and the tiny-dashed one
represents that atT = 10 K. From figure 1 we note the following findings.

(1) At lower temperatures (T = 2 K), there are two kinds of oscillation, the usual SdH
oscillations and the Weiss-like oscillations. These latter novel oscillations are correlated



9302 Tong-zhong Li et al

with the modulation of the applied magnetic field. The period of the Weiss oscillations is
much larger than that of the SdH oscillations. AtB0 < 0.3 T, only Weiss oscillations are
observed in1EF since the SdH oscillations are too weak to be resolved. The amplitude of
the Weiss oscillations is less than 0.01 meV, which is of order 0.1% of the Fermi energy
at zero temperature. AtB0 > 0.3 T, SdH oscillations overlap the envelopes of the slow
oscillations (Weiss oscillations).

(2) At higher temperatures (T = 10 K), the SdH oscillations are all damped out, and
only the Weiss oscillations remain. Weiss oscillations in the Fermi energy have a much
weaker dependence on the temperature, contrasting with the sensitive dependence of SdH
oscillations.

(3) As one would expect, the zero points of1EF correspond to those of the bandwidth
of the Landau subband at the Fermi level (see figure 3.1 in reference [22]). One period in
the bandwidth oscillation corresponds to one period of the Weiss oscillation in the Fermi
energy1EF . Because1EF oscillates around zero and the bandwidth is always positive, we
have the remarkable result that1EF is zero when the bandwidth has its maxima. Therefore
the Weiss oscillations in the Fermi energy stem from the oscillation properties of the Landau
bandwidth of the 2DEG in a modulated magnetic field.

From a comparison with the results in reference [9], we know that (a)1EF has a much
smaller amplitude of Weiss oscillation than that in the case of the potential modulation;
(b) the Weiss oscillations are about 90◦ out of phase in both cases; and (c) the Weiss
oscillation in 1EF has a weaker dependence on the temperature than for the potential
modulation case (see also figure 4 in [9]).

It is known that all of the thermodynamic properties of a system can be obtained as
derivatives of the free energy of the system. For a non-interacting 2DEG, the free energy
per unit area is [23, 24]

F = neEF − 2kBT
∫ ∞

0
dE D(E) ln(1+ e(EF−E)/kBT ) (5)

where the factor 2 is the spin degeneracy. From the free energy we could determine the
electronic contribution of a 2DEG to the magnetizationM = −∂F/∂B0, the susceptibility
χ = −∂2F/∂B2

0, and the specific heatC = −T ∂2F/∂T 2. Because of the dependence of
the free energy on the the DOS of a 2DEG, the properties of the DOS will be reflected
indirectly in the different thermodynamic quantities. For the sake of simplicity, we do not
consider the contribution of the scattering impurities here. From equations (3) and (5), the
free energy per unit area per electron is given by

F/ne = EF − kBT

neπl2

∞∑
n=0

1

π

∫ π

0
dt ln(1+ e(EF−En,t )/kBT ) (6)

whereEn,t is the energy spectrum of the electron in a 2DEG in a modulated magnetic
field, determined by equation (1). The numerical results forM, χ , andC are shown in
figure 2 and figure 3. Some of the parameters used are listed in the figures. Note that
the thermodynamic quantities have been rescaled in the two figures. The magnetization
(figure 2(a)) and susceptibility (figure 2(b)) are rescaled by the factorM0 = χ0 = neµ

∗
B ,

whereµ∗B = eh̄/2m∗ ∼ 0.87 meV T−1 (in GaAs,m∗ = 0.067m) is the effective Bohr
magneton. ThereforeM/M0 is the magnetization per electron in units ofµ∗B , andχ/χ0

the susceptibility per electron in units ofµ∗B T−1. Figures 3(a) and 3(b) show the
specific heat per electron in units ofkB . In figure 3(b), the solid line represents the
specific heat at temperatureT = 2 K (corresponding to the left-handY -axis) and the
tiny-dashed one the specific heat atT = 4 K (corresponding to the right-handY -axis).
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(a)

(b)

Figure 2. (a) The magnetization and (b) susceptibility due to the 1D periodic magnetic mod-
ulation as a function of the magnetic fieldB0 for T = 2 and 10 K.

Figure 3(c) shows the change in the specific heat due to the modulating magnetic field, i.e.,
1C = C(B1)− C(B1 = 0). TheT 1C–B0 relations are plotted so as to show the specific
heat at different temperatures in the same figure.

From figure 2 and 3 we note the following findings.
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(a)

Figure 3. The specific heat in a magnetic field with a weak 1D periodic modulation (a) at
T = 2 K (the inset represents the oscillations in the regionB0 = 0.1–1.0 T), and (b) at two
temperaturesT = 2 and 4 K, and (c) the change in the specific heat multiplied by the temperature
due to the 1D modulation.

(1) All of the thermodynamic quantities exhibit two kinds of oscillation, the Weiss
oscillations and the SdH ones. For weaker magnetic fields, there are only Weiss oscillations,
while at higher magnetic field, the SdH oscillations appear.

(2) The Weiss oscillations have a weaker dependence on the temperature than the SdH
ones.

(3) The Weiss oscillations in the magnetization and1EF are in phase, while the
corresponding SdH oscillations are 180◦ out of phase (see also figure 1).

(4) The Weiss oscillations and SdH oscillations in the susceptibility and1EF are 90◦

out of phase (see also figure 1).
(5) At lower temperature, the SdH oscillations modulating the Weiss oscillations are

more obvious for the specific heat, as shown in figures 3(a) and 3(b). The Weiss oscillations
in 1C are in phase with the oscillations in the bandwidth at the Fermi level (see also figure 2
in reference [22]).

In contrast to the case for the potential modulation [9], the differences are that (a)
the Weiss oscillations in the magnetization, the susceptibility, and the specific heat (1C)
show about a 90◦ phase difference between the magnetic and potential modulation cases;
(b) the Weiss oscillations and SdH oscillations in1C are symmetric about the zero point,
unlike the ones in the potential modulation case; and (c) the Weiss oscillation in1C has
a much smaller amplitude than that in the potential modulation case (see also figure 5 of
reference [9]).



Thermal properties of a two-dimensional electron gas 9305

(b)

(c)

Figure 3. (Continued)

3. Thermal magnetotransport coefficients

The thermal transport properties of a 2DEG in a uniform magnetic field have been
extensively studied by some authors [25–33]. In this section we calculate the thermal
magnetotransport coefficients of a 2DEG in a 1D periodic magnetic field in the regime of
linear response theory in combination with the phenomenological transport equations for
the electrical and thermal currents [25, 33].
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Let Je andJQ be respectively the electrical and thermal current densities of a 2DEG in
equilibrium. The corresponding driving forces are respectively(−1/e)∇µ̄ andT ∇(1/T )
[25, 26, 33], whereµ̄ = µ+ eφ, µ is the chemical potential,e the charge on the electron,
and T the temperature of the system. According to Luttinger’s expressions [25], the
phenomenological transport equations are

Je = L11

[
−1

e
∇µ̄

]
+ L12

[
T ∇

(
1

T

)]
(7)

JQ = L21

[
−1

e
∇µ̄

]
+ L22

[
T ∇

(
1

T

)]
. (8)

Generally speaking, the phenomenological transport coefficientsLij (i, j = 1, 2) are tensors,
i.e.,Lij = (Lαβij ), whereα, β = x, y. The transport coefficients satisfy the Onsager relation
[26] Lij (B) = Lji(−B).

With the results of Smřcka and Sťreda [26], the phenomenological transport coefficients
are given by the following equation:

L
αβ

ij (T , µ) =
∫ ∞
−∞

(
−∂f (η)

∂η

){
[(η − µ)/e]i+j−2σαβ(η)

}
dη (9)

wheref (η) = 1/{1+ exp[(η − µ)/kBT ]} is the Fermi–Dirac distribution function of the
energy.σ(η) is the zero-temperature electrical conductivity, dependent on the energyη. The
above equation is valid under the assumptions of: (1) a non-interacting 2DEG; (2) elastic
scattering of the electrons and the impurity particles, i.e.,0n � kBT , where 20n is the
broadening of the Landau levels due to the impurity scattering; and (3) Landau levels well
separated by gaps of width proportional to ¯hωc. With the relationσxy = −σyx , we know
that theLij satisfyLxyij = −Lyxij .

According to the definitions, the conductivityσ , the thermal transport conductivityκ,
and the thermopowerS are determined by [33]

σ = L11

κ = (L22− L21L
−1
11L12)/T

S = (L−1
11L12)/T .

(10)

At zero temperature, the diagonal components of the conductivity tensors (σxx, σyy)
are non-zero only in the energy intervalη ∈ (E0

n − |εn,1|, E0
n + |εn,1|) [22], where the

E0
n = (n + 1/2)h̄ωc correspond to the Landau levels in the uniform magnetic field (B0).

Then the diagonal components may be written as sums of the partial contributions of the
individual Landau subbands [22], i.e.,

σαα(η) =
∑
n

[∑
ky

σ
n,ky
αα (η)

]
σ
n,ky
αα (η) = 0 (η 6= En,ky )
σ
n,ky
αα (η) 6= 0 (η = En,ky )

(11)

whereα = x, y; the En,ky are determined from equation (1). The zero-temperature Hall
conductivity is

σyx(η) =
∑
n

[∑
ky

σ
n,ky
yx (η)

]
σ
n,ky
yx (η) = 0 (η 6∈ (En,ky , En+1,ky ))

σ
n,ky
yx (η) 6= 0 (η ∈ (En,ky , En+1,ky )).

(12)
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With the results of reference [22], we can write out the partial conductivity. To the
order of(h̄ω1)

2, we have
σ
n,ky
xx (η)|band= 0

σ
n,ky
yy (η)|band= 2πl2

2πe2τ l2

h̄2a2
ε2
n,1δ(η − E0

n).
(13)

The scattering contribution is

σ
n,ky
xx (η)|scattering= σn,kyyy (η)|scattering= 2πa

e2

h

(
niV

2
0

π0a

)
[(2n+ 1)+ Bn,ky ] (η = En,ky )

(14)

whereV0 andni are respectively the potential strength and areal density of the randomly
distributed impurities. We have taken0n = 0, independently of the Landau quantum
number.Bn,ky is given by

Bn,ky =
1

2

(
ω1

ωc

)2

ue−u
[
D2
n−1(u)+D2

n(u)+Dn−1(u)Dn(u)
]

sin2(Kx0) (15)

with

Dn(u) = [1− u−1]L(1)n (u)+ 2L(2)n−1(u) (16)

whereL(j)n (u) is the associated Laguerre polynomial andx0 = l2ky .
The partial Hall conductivity at zero temperature is given by

σ
n,ky
yx (η) =


0 (η 6∈ (En,ky , En+1,ky ))

2πa
2e2

h

l2

a
(n+ 1)

1

[1+ λn cos(Kx0)]2
(η ∈ (En,ky , En+1,ky ))

(17)

whereλn = [εn+1,1− εn,1]/h̄ωc with εn,1 determined by equation (1).
Substituting equations (11)–(17) into equation (9), we obtain the zero-temperature

phenomenological transport coefficients (L
αβ

ij ), to the order of(h̄ω1)
2, as follows:

Lxxij |band = 0

L
yy

ij |band = 2πe2τ l2

h̄2a2

∞∑
n=0

(
−∂f (η)

∂η

)∣∣∣∣
η=E0

n

(ε2
n,1)

[
(E0

n − EF )/e
]i+j−2 (18)

and

L
yy

ij |scattering= Lxxij |scattering= e2

h

(
niV

2
0

π0a

) ∞∑
n=0

[(2n+ 1)Anij + Bnij ] (19)

with

Anij =
∫ a/l2

0
dky

[
−∂f
∂η

] ∣∣∣∣
η=En,ky

[
(En,ky − EF )/e

]i+j−2
(20)

Bnij =
1

2

(
ω1

ωc

)2

ue−u[D2
n−1(u)+D2

n(u)+Dn−1(u)Dn(u)]E
n
ij (21)

Dn(u) = [1− u−1]L(1)n (u)+ 2L(2)n−1(u) (22)

Enij =
∫ a/l2

0
dky sin2(pKx0)

[
−∂f
∂η

] ∣∣∣∣
η=En,ky

[
(En,ky − EF )/e

]i+j−2
. (23)
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The non-diagonal component ofLαβij is

L
yx

ij =
2e2

h

l2

a

∞∑
n=0

(n+ 1)
∫ a/l2

0
dky

1

[1+ λn cos(Kx0)]2

×
∫ En+1,ky

En,ky

dη
[
(En,ky − EF )/e

]i+j−2
(
−∂f
∂η

)
. (24)

Like for the conductivity tensor [22], the diagonal components of the transport
coefficients are determined by{

Lxxij = Lxxij |scattering

L
yy

ij = Lyyij |scattering+ Lyyij |band.
(25)

The xx-component of the transport coefficients contains no band contribution. Due to the
modulation of the magnetic field, the transport coefficients are asymmetric, i.e.,L

yy

ij 6= Lxxij .
Now, on the basis of the numerical calculation, we discuss the oscillation properties of

the thermopower (S), the thermal conductivity (κ), and the thermal resistance (κ−1) of a
2DEG modulated by a 1D periodic magnetic field. From equation (10), we know thatL11 is
the conductivity tensorσ . Then(L11)

−1 is the resistivity tensor, i.e. ,ρ = σ−1 = (L11)
−1.

Its components areρxx = σyy/S0, ρyy = σxx/S0, and the Hall resistivityρxy = σyx/S0,
where S0 = σxxσyy + σ 2

yx . From the results of reference [22], we know that: (1)
σyx � σxx and σyy , and (2) |1σyx | � σyx . Thus we may use the approximation
S0 ≈ (σyx)2 ≈ (nee/B0)

2 in the calculation ofρxx and ρyy , while for the Hall resistivity
we useρxy = 1/σyx in the calculation. Therefore, the components of the thermopower are
given by the following equations:

T Sxx = (σyy/S0)L
xx
12 + (1/σyx)Lyx12

T Syy = (σxx/S0)L
yy

12 + (1/σyx)Lyx12

T Sxy = (σyy/S0)(−Lyx12)+ (1/σyx)Lyy12

T Syx = (σyy/S0)L
yx

12 + (−1/σyx)L
xx
12

(26)

whereσ = L11. The components of the thermal conductivity are
T κxx = Lxx22 − [Lxx21(T Sxx)+ (−Lyx21)(T Syx)]

T κyy = Lyy22 − [Lyx21(T Sxy)+ Lyy21(T Syy)]

T κyx = Lyx22 − [Lyx21(T Sxx)+ Lyy21(T Syx)].

(27)

In the numerical calculation we use the following parameters:m∗ = 0.067m, the
areal carrier densityne = 3.16 × 1015 m−2, the electron mobilityµe = 1.3 × 1010

m2 s−1, the impurity concentrationni = 1× 1012 m−2, and a small impurity broadening
0 = 0.0129

√
B0 meV. For the 1D magnetic modulation witha = 3000Å andB1 = 0.06 T

in the lowest-order approximation of Fourier transformation, i.e.,B1(x) = B1 cos(2π/a)x,
the thermopower tensor divided by the temperature is plotted in figure 4(a) as a function
of the uniform magnetic fieldB0 in the units of−(kB/e) K. BecauseSxx ≈ Syy , only the
componentSxx is shown. The changes in the thermopower due to the modulating magnetic
field, i.e.,1Sµν = Sµν(B1)− Sµν(B1 = 0), are shown in figure 4(b). Different components
of 1Sµν have been offset, and the zero points are indicated by the corresponding horizontal
arrows in figure 4(b).

From figure 4 we have the following findings.

(1) The diagonal components of the thermopower (Sxx ≈ Syy) are always negative, due
to the negative charges of the carrier particles (electrons), whileSxy oscillates around zero.
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(a)

(b)

Figure 4. (a) The thermal electrical power divided by temperature versus the magnetic field
B0 for T = 1 and 4 K. (b) The changes in the thermal electrical power due to 1D modulation
divided by temperature versus the magnetic fieldB0 for T = 1 and 4 K.

(2) At lower temperature (T = 1 K) and forB0 > 0.2 T the SdH oscillations appear
and overlap the oscillating envelope of the Weiss oscillations.

(3) The Weiss oscillations inSxy (1Sxy) andSxx (1Sxx) are out of phase and their SdH
oscillations are 90◦ out of phase.

(4) The Weiss oscillations inSxx (1Sxx) andρxx (1ρxx) are 90◦ out of phase, while their
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(a)

(b)

Figure 5. (a) The thermal conductivity divided by temperature versus the magnetic fieldB0.
(b) The changes in the thermal conductivity due to the 1D periodic magnetic modulation divided
by temperature forT = 1 and 4 K.

SdH oscillations are in phase. The Weiss oscillations in1Sxy and1ρxy are in phase, while
their SdH oscillations are 90◦ out of phase (see also figures 3(a) and 3(b) in reference [22])).

(5) The Weiss oscillations in1Sxy are larger than those in the diagonal component
1Sxx (≈1Syy).

(6) At higher temperature and for a stronger magnetic field,Sxy tends towards zero.
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We know that the results obtained here are very similar to the ones corresponding to the
potential modulation case [9]. The difference is that the Weiss oscillations inSxy (1Sxy)

andSxx (1Sxx) are out of phase for the magnetic modulation, contrary to the ones in the
potential modulation case (see also figure 10 in [9]).

With the same experimental parameters as were used above, the numerical results for the
thermal conductivityκµν and the corresponding change1κµν (= κµν(B1)−κµν(B1 = 0)) due
to the modulation magnetic field are shown in figures 5(a) and 5(b). All of the components
are divided by the temperature so as to enable us to plot the thermal conductivity at different
temperatures in the same figure. For the same reason,κyx is divided by a factor of 5, and
1κxx and1κyx are moved down by five and ten units, respectively, and their zero points are
indicated by the corresponding horizontal arrows. From figure 5 we find that the oscillation
properties of the thermal conductivityκµν (1κµν) are similar to those of the conductivity
tensorσµν (1σµν) (see also figures 2(a) and 2(b) of reference [22]). We also have the
following findings.

(1) The Weiss oscillations inκµν (1κµν) have a stronger dependence on the temperature
than those inσµν (1σµν). For lower magnetic fields (B0 < 0.2 T), this property behaves
more expectedly.

(2) The Weiss oscillations inκµν (1κµν) andσµν (1σµν) are in phase, while the corres-
ponding SdH oscillations are 180◦ out of phase.

Compared with the results for the potential modulation [9], we know that (a) the value
of κyy (1κyy) is much larger than that ofκxx (1κxx); and (b) the Weiss oscillations have
much larger amplitudes inκyy (1κyy) than that inκxx (1κxx) (see also figure 11 in [9]).

In analogy to the definition of the resistivity, we may define the thermal resistance tensor
κ−1, i.e., (κ−1)κ = 1. The thermal resistances multiplied by the temperatures are plotted

Figure 6. The thermal resistance multiplied by the temperature versus the magnetic fieldB0 for
T = 1 and 4 K.
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versus the magnetic fieldB0 in figure 6. The components(κ−1)xx and (κ−1)xy have been
rescaled and the component(κ−1)xx/10 has been moved upward by 0.3 units. Figure 6
shows us that the thermal resistance tensors have the following oscillation properties.

(1) At lower temperature (T = 2 K) and for lower magnetic fields (B0 < 0.4 T), the
oscillation in(κ−1)xy is not obvious. AtB0 > 0.4 T, (κ−1)xy has some oscillating structures.

(2) The oscillation amplitude of(κ−1)xx is much larger than that of the component
(κ−1)yy . This is more obvious than that in the potential modulation case [9] (see also figure
12 in [9]).

(3) The Weiss oscillations in(κ−1)xx and (κ−1)yy are out of phase while the
corresponding SdH oscillations are in phase, similarly to the modulation case [9] (see also
figure 12 in [9]).

Comparing to the resistivity tensor (see also figures 3(a) and 3(b) in reference [22]), we
have the following findings.

(1) The Weiss oscillations in the corresponding components of the resistivity and thermal
resistance are in phase, while the SdH oscillations are out of phase.

(2) The Weiss oscillations in the thermal resistance tensor(κ−1)µν have a stronger
dependence on the temperature than those in the resistivity tensor.

At lower magnetic field, the Weiss oscillation amplitudes in the thermal resistance at
the temperatureT = 4 K are much larger than those atT = 1 K.

4. Conclusion

In this paper we have performed some calculations on the thermodynamics and thermal
magnetotransport properties of a 2DEG modulated by a 1D periodic magnetic field similar
to those carried out for the case of a potential modulation [9]. The results obtained here
are similar to the ones in the potential modulation case [9], except for some essential
differences as discussed above. The results show us that, because of the presence of
the magnetic modulation, novel oscillations (Weiss oscillations) have been found in the
thermal magnetotransport coefficients, except for the SdH oscillations, similar to those
in the electrical magnetotransport coefficients [9, 16–22]. The conclusions regarding the
oscillation properties are as follows.

(1) At lower temperatures (T = 1, 2 K), there are two kinds of oscillation in the Fermi
energy and the thermal magnetotransport coefficients: the usual SdH oscillations and the
Weiss oscillations. For weak magnetic fields (B0 < 0.2 T), there are just Weiss oscillations
because the SdH oscillations are too weak to be resolved, while atB0 > 0.2 T, SdH
oscillations appear and overlap the envelopes of the slow oscillations (Weiss oscillations).

(2) At higher temperatures (T = 4, 10 K), there are just Weiss oscillations. The Weiss
oscillations have a much weaker dependence on the temperature than the sensitive depen-
dence of the SdH oscillations.

(3) The thermal magnetotransport coefficients (κµν , (κ−1)µν) have a stronger dependence
on the temperature than the electrical ones (σµν , ρµν) [22].

Measurements of the thermopower of a 2DEG in a uniform magnetic field have been
made by some authors [30, 32]. The results in this paper remain to be confirmed by
experimental measurements.
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